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SUMMARY

Direct extrusion of aluminum alloy 7050 and 7475 results
in a product which has a nonuniform microstructure. The structure
varies from surface to center and from front to rear of the product,
The nonuniform structure develops within the billet during the
extrusion process. Cylindexr wall shear produces a region of
intense deformation adjacent to the surface. During the stroke
this layer widens and toward the end of the extrusion cycle, the
heavily sheared layer constitutes a significant volume of the
billet. The material at the surface of the product comes from
the heavily sheared layer and the depth of this well defined layer
increases from front to rear of the product. During solution heat
treatment, if the structure has a tendency to recrystallize the
greatest probability of recrystallization iy at the surface. Ex-
truding at high Z (low temperature and high strain rate where Z
is the temperature compensated strain rate) facilitates recrystalli-
zation throughout the product with complete recrystallization at
the surface. Furthermore, the results of this investigation
indicate that under similar fabricating conditions 7050 has a
greater tendency to recrystallize than 7475.

In addition to the effect of nununiform flow on the
development of a nununiform grain structure, the distribution of
insoluble particles are also affected by the metal flow. At high
extrusion ratio, or near the surface where the amount of deforma-
tion is high, the interparticle spacing of the insolubles appears

to be modified by deformation. Increasing the deformation




3

-

el

ST T

LEE e oy BRI e
Rl ol s PR R P D

Ginie o I Dt " 12

iv

increases the interparticle spacing in & plane parallel to the
deformation.

Yield strength was affected by cross-section geometry
and composition, but was unaffected by changes in Z or R (extrusion
ratioc). The major effect of cross-section geometry appears to be
on its influence on crystallographic texture. Axi-symmetric
extrusion (round billet cross-section to a round product) leads
to duplex fibter texture. The <111> and <100> directions are
parallel to the axirs of extrusion, changing the cross-section to a
rectangle results in a texture similar to that which is produced
by hot-rolling ((110) <112>)).

Ductility and tcughness could be correlated to extrusion
ratic and location with respect to surface or center of the ex-
truded product. Increasing R or testing near the surface results
in an increase in 1. and LT ductility and an increase in UPE in
the L and LT orientatioms.

Analysis of the fatigue crack grcwth data revealed only
one consistent trend in the data. The combination of high Z and
high R resulted in the shortest lives for both 7050 and 7475.

The use of Z in relating microstructure to processing
in heat treatable alloys must be approached with caution, since

changes in temperature affect the amount of soluble phase in

solution and therefore the recrystallization behavior.
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INTRODUCTION

Extrusion is an important process in commercial
forming of metals. It is, however, a complex process insofar
as understanding how structure develops during deformation and

- i how structure, in turn, determines final mechanical properties.
7 There have been a number of investigations which have led to

.+ a fundamental understanding of the relationship between micro-
structure and processing variables such as billet temperature,
ram speed, and extrusion ratio}'7Although most of these studies
- have been conducted using high purity alloys, small laboratory
7 presses, and axisymmetric deformation, the results of these

E investigations can be applied to the design and execution of a
; ) program to address some of t‘he complexities of commercial
extrusion. This program attempts to examine in detail the

<3 influence of changes in the basic extrusion variables on the

- develcpment, distribution and morphology of a variety of
microstructural features and the relationship of the micro-

; structure to strength, toughness, and fatigue crack growth of

: L heat treatable aluminum alloys.

é In past investigations, partially extruded bkillets
and products were examined by optical, X-ray degree of re-
crystallization, and transmission electron microscopy tech-
niques. These examinations revealed systematic variations

in deformation throughout the billet and product., The

structural observations were correlated to the mechanical

i properties by applying concepts originally developed to explain

RERREP PRI L




structural changes occurring in creep, where flow stress,

o strain rate, ¢, and deformation temperature, T, are

related by:8-11

E'

_ _ " AH
o, = £(2), where Z = e{exp(iﬁ)}.

In the above equation, AH is an activation energy and Z is
the Zener-Holloman parameter or temperature compensated
strain rate.

Qualitatively, when Z is high, i.e., either the
temperature is low or the strain rate is high, fewer thermally
activated events can occur per unit strain, and, therefore,
the flow stress will be high. When 2 is low, the converse
is true.

Structurally, for a particular combination of ¢ and
T, i.e., Z, a limiting or equilibrium subgrain size is reached
and, correspondingly, a limiting flow stress results. Usually,
both equilibrium subgrain size and flow stress can be functionally
related to Z. The equilibrium structure is a consequence of the
mutual rates of creation and annihilation of dislocations and
the rearrangement of the remaining dislocations into regular low
angle boundaries or subgrains. This mechanism is referred to
as dynamic recovery.

Because flow stress at room temperature also increases
with decreasing subgrain size, equilibrium structuvres produced

under a variety of hot working conditions should reflect an

i

b BT G




interrelationship between %, subgrain size, and room tempeya-

ture properties of nonheat treatable alloys.

The appliication of the above principles can then be
applied to extrusions in the following way. The variables

temperature, ram speed, and extrusion ratio can be used to

calculate 2 by applying certain simplifying assumptions. For

instance, the starting billet temperature may be used as an

estimate of temperature and the strain rate may be calculated

g by use of a relatienship such as Feltham's:12

GD%Vram(lnR)tana

. ’
= k- 3
Dc Dg

i
m

F where:
) - é = mean strain rate,
D, = cylinder diameter, %
DE = diameter of extruded section, %
K Vram = ram speed, %

R = extrusion ratio, and
e N o = angle between cylinder center line and the

dead metal zone boundary.

Thus, for given conditions, an estimate of the temperature com-~

pensated strain rate, Z, is:

2
6DC Vram(lnR)tana

- 8H_ |
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Using these ideas, the present investigation aims to test the
applicability and limitations of the above concepts when applied
to commercial, heat treatable, high-strength 7XXX aluminum alloys
and to make available the information gathered to aid in the
production of consistent, predictable structures and properties.

EXPERIMENTAL PROCEDURE

Material

Four 22.86 cm (9.0") x 254 cm (100.0") ingots were cast
by the HDC method. The melt analyses are listed in Table 1. The
compositions are nominally equivalent to 7050 and 7475. Two
solidification rates were used in an attempt to alter the ingot
grain size to correspond tc large and small ingot cross-sections.
The cast ingots were scalred to approximately 15.5 cm (6.12")
diameter and cut into 30.5 ¢m (12.0") length for extrusions billets.

Fabrication

The billets were extruded into round rod and rectangular
bars from a 16.2 cm (6.38") diameter cylinder on a 22.24 MN
(2500 ton) production size press. A detailed description of the
experimental design is given in Appendix A. The extrusion data
are summarized in Table 2 and represent two phases of work. 1In
the first phase, aimed at better understanding of the develop-
ment of structure and properties in an extruvded product, four
7050 billets were preheated, reheated to the desired extrusion
temperature and partially extruded tc approximately 50% of

complete extrusion. Once the desired amount of extrusion was

achieved, the unextrud.:d portion of the billet was pushed from




the container, shesared from the extruded product, and guenched
in room-temperature water. The elapsed time from load removal
to quench was approximately one minute. Thke unextruded billet
portions were split in half longitudinally. One half of the
billet was solution heat treated at 477°C (890°F) for 1.5 hours
and cold watexr quenched. Both halves were then machined on a :
diametral plane and macroetched to revezl) the flow patterns and
the developing structures in the as-fabricated temper (F) and

in the sclution heat treated and quenched temper (W). The
macreoetching was done using hot, 66°C(l50°F) caustic solution
(5% by weight NaOH), washed in room temperature water, washed
in 20% (by volume) nitric acid to remove corrosion product, and
rinsed in water.

In the second phase, 26 billets were extruded at
various extrusion ratios, temperatures, strain rates, and
section geometries to manipulate microstructure, in accordance
with previous discussion.

Microstructure

Structure in the Billet. Figure 1 is a photograph

showing the grain flow in the high Z, low R extrusion (F temper)
and illustrating the regions of interest for the metallographic
and TEM investigations in the F and W tempers of the partially
extruded 7050 billets. As indicated in the photograph, there
are four regions to be examined. One is region A, a region of

intense deformation as suggested by the grain flow. This region

lies adjacent to the cylinder wall at the rear of the billet and
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curves toward the die opening at the front of the billet. A
second region, B, lies along the centerline which extends from
the rear of the billet toward the die opening. A third region,
C, appears as a “"cone" of deformation and is located in the
approach to the die opening. The fourth region, D, lies just
beyond the die exit in the product.

TEM and X-ray transmission specimens were prepared
from the partially extruded billets by machining a longitudinal
slab approximately 0.51 mm (0.020") thick. For reference, the
thinned sections contained the macroetched surface. The
machined slabs were chemically thinned in a solution containing
400 ml HCl, 400 ml H,0, 20 grams NaCl and 4 grams NiSCx, The
sections were then washed in a caustic solution (5% by weight
NaQOH) and cleaned in a solution of concentrated HNO3. Trans-
mission Laue photographs were taken at selected locations
adjacent to, and within, the heavily shecared layer in the F
and W tempers. Discs 3.0 mm (0.12") in diameter were punched
from the thinned sections of the high Z, low R and low Z, low
R extrusions. Only F temper material was examined in the TEM.
The discs were electropolished in a twin jet Fischione polishing
cell operated at approximately 12 volts d.c¢. A soliution of 25%
{(by volume) nitric acid and 75% methanol cocled to approximately
-30°C (-22°F) was used for the polishing.

The W temper metallographic specimens were mechanically
polished, electropolished using a solution of 46 ml HBFy (48%),
977 ml H;0, and 7 grams of boric acid at 20 volts, and examined

using polarized light.
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Structure in the Product. Selected specimens from

near the midlength of the extruded products were examined in
the F temper by TEM and the phases present along with their
relative amounts determined by X-ray diffraction. Estimates
of mean subgrain size were made using the linear intercept

method., Measurements were made on foils prepared at the

surface, T/4, and T/2 locations in the high Z, low R and low
Z, low R 7050 extrusions. The X-ray intensity data were
collected on film using a Guinier-deWolff quadruple focusing
camera. All extrusions were examined by optical microscopy
and transmission X-ray Laue techniques. The metallographic
specimens were mechanically polished and examined in the as-
polished and electropolished ccaditions.

The as-polished 7050 and 7475 specimens generally
had a low volume fraction of secondary intermetallic pre-
cipitates, which is typical for these alloys. However,
those extruded from the 7050 ingot cast at a slow solidifi-
cation rate had a large amount of porosity along the center-
line. Examples of this porosity are shown in Figure 2.
Because the porous specimens came from midlength, thg lot of
extrusions in question was considered to be of unacceptable
guality and was not examined further.

Estimates of mean subgrain size were made on the

four 7050 extrusions at surface, T/4, and T/2 locations

provided these regions did not fully recrystallize,




Reflection pcle figure data were collected on the
rectangular cross—-section extrusions of 7050 and on the 7475
round rod. The specimens were machined from blanks along the
centerline at mid-thickness on the rectangular section extrusions
and from along the centerline on the round rod extrusioas. The
specimens were 2.54 cm (1.0") long bv 2.54 cm (1.0") wide by
0.64 cm (0.25") thick and in the W temper. The data were collected
using an automated Siemens texture diffractometer with an oscil-
lating stage. To fully describe the texture the (111), (200),
and (220) Bragg reflections were examined. 1Intensity histograms
were collected at § second intervals while the ¢ axis (axis of
roatation perpendicular to the plane of the specimen) and the x
axis (axis of rotation perpendicular to the § axis) were con-
tinuously rotating at a 5:1 ratio, The simultaneous two-axis
rotation resulted in a spiral covering the sphere of reflection,
as illustrated by Figure 3. The same intensity data were cor-
rected for the angular dependence of absorption and plotted using
computer programs written at Georgia Tech.

Mechanical Testing

The front half of each extrusion was solution heat
treated,* cold-water quenched, stretched 1,5%, naturally aged
for one week, and artificially aged for 24 hours at 121°C followed
by 15 hours at 163°C (T76-type tempers). The various specimens

for mechanical testing were prepared from these front end

*Solution heat treatments: 7050 - 1.5 hours at 477°C (890°F)
and for 7475 - 1.5 hours at 516°C (960°F).




sections taken at midplane along the centerline of the extrusions.
A complete description of specimen location and the type of
specimen is given in Appendix B,

Constant Amplitude Fatigue Crack Growth (CAFCG). The

7050 and 7475 extrusions in a T7651~type temper were investigated
for changes in CAFCG performance as a function of the processing
conditions. The FCG specimens were compact tension type with
an L-T fracture plane orientation (See Append.ix B).

All tests were conducted on closed lcop, eslectro-
hydraulic servo-controlled MTS test equipment. Crack growth
was monitored electronically by crack propagation gauges as

shown in Figure 4. Uniform increments of crack extension 1.27

mm (0.05") apart were measured as strands of the wire gauge
broke due to the propagating crack. Numbers of cycles were
monitored on a 20 counter electronic box so that as each gauge
strand broke, the counter for that strand stopped and the next

counter started. The data were obtained as crack length vs

v cycles and converted to rate of crack growth vs AK, Pilot tests
7 : were run to check the accuracy and reliability of this system.
5 ! Figure 5 shows the crack growth vs numbar of cycles obtained by
1 visual reading of photogrids on the surface of the specimen. It
if% ) can be seen that they are in good agreement. The visual measure-

o ment can be made within +0.05 mm (+0.002") or within +1% of a/w.
The maximam expected eirror in crack destection with gauges is esti-

mated to be about +0.1 mm (+0.004") or within +2% of a/w.*

. *Final Report NAVAIR Contract N00019-76-C-0482, "Effect of
v Microstructure on Fatigue Crack Growth of 7XXX Aluminum
3 Alloys Under Constant Amplitude and Spectrum Loading.®
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Bumid air (relative humidity >90%) wos used as the
reference environment for all tests. The high humidity assures
a mositure-saturated envircnment, thereby reducing sensitivity
of crack growth rate to both test frequency and small changes
in mositure content.*

All tests in this phase of the investigation were
conducted at constant amplitude conditions with sinusoidal

loading a maximum stress, « of 17.4 MPa (2524 psi) and

max’
a stress ratio of R=0.33. A fregquency of 20 Hz was maintained
through the entire test. Maximum load, Pmax’ and lcad range,
AP, were maintaine? within +2%.

The rropagation gauges were located to obtain data
as the crack length, a, extended from 20.3 mm (0.8") to
45.7 mm (1.8") in all tests. The factors corsidered in

deciding the location of the gauges are as follows:

Stress Intensity Range: The stress intensity range

traversed during the constant load cycles corresponds to inter-
mediate AK levels of 4.4 to 15.0 MPa/m (4.0 to 13.6 ksi/in.).
For screening purposes, these K levels were chosen to be high
enough so as not to make the test too time consuming and low
enough so that crack growth is not predominantly influenced by
fracture toughness of the material.

Specimen Size Requirement: Calculations indicated

*Wel, R. P,, "Some Aspects of Envirorment-Enhanced Fatigue
Crack Growth," Engineering Fracture Mechanics, Vol 1, No.
4, April 1970.

- . Yoo
S A e ATt S It DURM e Tns 2, SRSt ey e S s i T Tt e TammRos v embeen e




gt e
B Al TR TR SR

11

that the uncracked ligament size exceeded the ASTM requirement,

K 2
w/a, equal to or greater than a/nd sag) L

Precrack Interval: A sufficient precrackeé interval

of 17.1 mm (0.675") was provide? to initiate the crack. ' The
final 3.2 mm (0.125") of precracking to 20.3 mm (0.8") of crack
length was done at the test loads and humidity to avoid any

transient effects.

Fractography

Secticns of the fracture surface from the tensile, tear
and fatigue crack growth specimens were examined in the scanning
electron microscope to determine fracture mode and discern dif-

ferences in the fracture surface of the various samples.

Specimen Location Effects

-

To determine if the tensile and tear properties are influenced
by microstructure within a given extrusion, specimens were prepared
from a surface section of the low 2, low R 74750 extrusion in the

T7651 temper.

*ASTM E647-78T, "Tentative Test Methods for Constant-Load
Amplitude Fetigue Crack Growth Rates above 10~% m/cycle,"
1978 Annual Buok of ASTM Standards, Vol 10.
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RESULTS

Structure in the Billet

In an attempt to better understand the develo>pment of
structure in the product, partially e:..truded billets Qere
examined in the F and W tempers. This section will summarize
the microstructural observations.

The same general characteristics were observed in the
macroetched section from each of the four billets partially
extruded approximately 50% (15 cm butt). Consequently, the
billet extruded at high 2 into a low R product will be considered
representative of the general metal flew. Figure 6 is a photo-
graph of the macroetched F temper billet in the high Z, low R
extrusion. A region of intense deformation, suggested by the
grain flow, lies adjacent to the cylinder wall at the rear of
the billet and curves toward the die opening at the front of
the billet. This area is termed the heavily sheared layer.

A second region lies along the central portion <f the
billet and extends from the rear toward the front of the billet
near the die opening. The amount of deformation as suggested
by grain flow is limited at the rear but increases cc-siderably
near the die opening.

Surrounding the die opening there is an area which
appears as a cone of deformation which is a result of grain
distortion due to tue shape change occurring as the metal moves
from the billet to the smaller rzctangular section.

The last region of interest is in the vicinity of the

die exit and contains structure comimon to the billet and product.
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Thue micrestructures cof the partially extruded 70650

billets were examined in the F-temper by the techniques of X-ray
transmission Laue and TEM. Figures 7 and 8 contain pinhole photo-
graphs taken at several locations in the partially extruded
7050-F billets. The degree of recrystallization (as estimated
by the pinhole films*) varied from none on either side of the
heavily sheared layer to just started + at the center of the
layer. Furthermore, the recrystallized grains at the center of
the heavily sheared ‘ayer were fine. These observations are in
contrast to those made at similar locations in the high Z, low R
extrusion, Figure 8, where the structure was unrecrystallized
throughcut the billet.

TEM's from specific locations in the as-extruded billets
are shown in Figures 9 and 10. The microstructure in the heavily
sheared layer is characterized by & nonuniform distribution of
equiaxed subgrains with mechanical fibering of the precipitates in
the principle direction cf metal flow. Away from the heavily
sheared layer, sligutly larger equiaxed subgrains were present.
The microstructure of the high Z, low R extrusion was slightly
different from that of the low Z extrusions, Figure 10. The sub-
grains in the high Z extrusion tended tc be smaller and more
unifcrm in size than those at similar locations in the low 2
extrusion. In the heavily sheared layer, the subgrains were
elongated in the direction of metal flow. As observed in the

low Z extrusion, the precipitates were cligned in the direction

*Degree of recrystallization gradations: None, Just Barely Started,
Just Started, Started, Partizl, Complete.
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of meral flow. Numerous, small equilibrium precipitates of

n (MgZu,-type) and S (Al,CuMg) were observed in the high Z and

not in the lcw Z extrusion.
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Soluticn heat treating half of each of the partially ;

T T E T 7

extruded billets resulted in similar macro flow patterns. How-
ever, there were systematic variatiors in the recrystallization
behavior which could be correlated to location with:n the billet,

Z, and R, ;

adaet

Figure ll is a polarized light micrograph taken across

s arnin§

the heavily sheared layer in the high Z, low R extrusion. A
continuous variation in grain structure is apparent in this low
magnification photograph. Correspondingly higher magnification
polarized light micrographs are included in Figure 12, These
photographs were taker at the locations indicated on Figure 11.
Loacation A conrtains evidence of the original cast
structure; these cast grains, however, are distorted and are
elongated in the direction of metal flow. At position B, micro-

structure consists of coarse elongated and fine equiaxed re-

RN

crystallized grains with areas of unrecrystallized grains. At g
position C, most of the field contains coarse, recrystallized
grains with a few fine equiaxed recrystallized grains. At the
last position, D, most of the structure is unrecrystallized with
a few recrystallized grains.
Figures 13A&l% contain polarized light micrographs taken
approximately at the center of the heavily sheared layer of the
four different wartial extrusions. Figure 13 contains representa-
tive micrographs taken of the lcw Z and high 2 variants both

extruded at low R. The microstructure in the low Z was charac-

terized by a mixed grain structure containing both unrecrystallized
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and fine recrystallized grains. This structure is in contrast

TS PIRPRUIIV

to the coarse, elongated recrystallized grains observed in the
high Z extrusion. Figure 14 contains representative micrograpns
taken of the low Z and high Z variants both extruded at high m.
The low 2 microstructure was characterized by a mixed grain
structure containing areas of unrecrystallized grains, and both
coarse and fine recrystallized grains. The recrystallized grains
that formed under these extrusion conditions were slightly larger
than those extruded at the same calculated Z, but at the lowar
extrusion ratio. The grain structure from the high Z billet
extruded at high R contained unrecrystallized areas and both fine
and coarse recrystallized grains. This microstructure was dif-
ferent from the structure extruded at the same calculated Z, but
at the lower extrusion ratio. The low R resulted in much coarser
recrystallized grains, and a high fraction of recrystallized
grains throughout the shear layer.

Thqs, the microstructures of the solution heat treated
partial extrusions in the heavily sheared layer were observed to
vary across the layer with the greatest tendency to recrystallize
near the center. Furthermore, 2 and R both seemed to control the
type of microstructure produced. These structural variations
can be summarized as follows:

The high Z extrusions generally resulted in a greater
tendency to recrystallize than those extruded at
the low 2. Low R tended to result in larger, elongated

recrystallized grains when the calculated Z's were the

same,
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Thus, the.high Z, low R condition resulted in the greatest
tendency to recrystaliize, producing coarse, elongated grains.

Figures 15-18 contain micrographs of orthogonal sections
i{llustrating the effect of varying Z and using the same extru-
sion ratio (high R condition). The micrographs were taken at
areas located along the centerline and near the rear cof the

billet, and ncear the die opening at the front of the billet

within the coune »f deformation. At the rear, the original cast
i grains are easily recognizable and have undergone little shape
change. However, near the front in the cone of deformation,
the micrographs illustrate the shape change as a consequence of
extrusion from the round billet to the thin, rectangular section.
The transition area, or the area including material
"1} - in the billet and product, is quite interesting, especially in
the vicinity of the die corner showing the structure forming the
" 3 i product surface.
] Figure 19 is a low magnification polarized light
micrograph showing the variation of grain structure from surface

into the center of the product. The section was from material

LT

; ’ extruded at high Z high R. At the surface there is a layer

i containing coarse recrystallized grains. Below this layer the

microstructure is.unrecrystallized and the width of these

unrecrystallized grains increases from surface to center,
Figures 20-21 include four variants nof the partially

extruded 7050 at the die opening. Figure 20 shows the effect

of varying Z and extruding at low R. Extruding at low Z results in

=0




o s
T WAt ot oo

18

a thin layer of ceoarse, elongated recrystallized grains.
Extruding at high Z, on the other hand, results in a recrystal-
lized layer composed of coarse, elongated recrystallized grains
extending across the field of view.

Figure 21 shows the effect of varying Z on the develop-
ment of the recrystallized layer in the high R extrusions. In-
creasing Z increases the depth of the coarse recrystallized layer.

A comparision of the micrographs in Figures 20 and 21
illustrates the effect of R on structure while maintaining the
same calculated 2. The greatest absolute depth occurs in the
hich 2, low R, but a comparison of the depth of this recrystallized
layer with the layer formed by extruding at high 2, high R shows
that the low R thickness was approximately two times that of
the high R. The difference in reduction in the direction in which
the micrograph was taken was apprcximately 2.7 times greater in
the high R.

The recrystallized layer present on the surface appears
to develop from material moving from the heavily sheared lavyer.
The depth of the recrystallized layer is qualitatively related
to both Z and R. High Z tends to result in greater depth and
the greatest absolute depth occurs when extruded at high Z and
low R.

The above observations were made at approximately 50%
of completion of extrusion. This next section will summarize the
observations made on the butt ends of the high and low Z variants

of the ilow R extrusions of 7050.



19

Metallogrophic examinations of W-temper sections of the
butt ends of 7050 extruded at low and high Z at low R were made
to complete the understanding of microustructure development during
extrusion. As illustrated in the metallography from the partially
extruded billets, variations in grain flow, recrystallization,
and grain size were obsexved. There were, however, some specific
differences between the structure observed at 50% and near the
erd of the stroke.

The continuation of the extrusion process has widened
the heavily sheared layer, for example, compare Figure 22 with
Figure 6. The heavily sheared layer now constitutes a significant
fraction of the billet. Furthermore, material from the heavily
sheared layer is not confined to a thin layer at the surface of
the product, but now penetrates well into subsurface layers of
the product. Figure 22 compares the effect of Z on rhe structure
after solution heat treatment. (it is important to note the
fine grain structure in the zone which separates the billet and
the product is a result of the effect of the deformation from
shearing the product from the billet rather than the extrusion
process itself.)

Figures 23 and 24 contain micrographs taken at com-
paratively higher magnification than in Figure 22 from the
heavily sheared layer of the low Z extrusion. In this region
very fine recrystallized grains are present. Near the top of the
heavily sheared layer, however, there are some coarse, elongated,
recrystallized grains. Figure 24 is a photomicrograph of this
area. The large grains appear to be associated with tears in

the metal.
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Figure 25 shows the grain structure in, and adjacent
to, the heavily sheared layer in the high Z extrusion. In contrast
to the grain structure in the heavily sheared layer of the low Z
extrusion, Figure 23, the recrystallized grains are not uniform
in size and numerous large elongated grains can be seen.

Figures 26 and 27 show the grain structure in, and
adjacent, to the heavily sheared layer in the low Z, Figure 26,
and high Z, Figure 27,extrusions. In the low Z extrusioms, the
structure is mixed with fine recrystallized grains along with the
elongated cast grains. In contrast, the high Z extrusion contains
coarse, elongated, fully recrystallized grains.

In summary, toward the end of the stroke, the heavily
sheared layer has widened and constitutes a significant portion
of the billet area. 1In areas that have recrystallized, the low Z
extrusion results in a more uniform, fine grain structure than

the high Z extrusion.
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Structure in the Product

The detailed optical metallographic and transmission
X-ray Laue investigations on each of the 7050 and 7475 extrusions
showed a number of microstructural variations. The observatiois
could be correlated qualitatively to temperature compensated
strain rate, Z, extrusion ratio, R, alloy, and specimen location
as to surface or center.

Extrusions run under conditions of highest tempera-
ture compensated strain rate, Z, had the greatest tendency to
recrystallize upon solution heat treatment. This can be shown
by comparing Figures 28 through 33 with Figures 34 through 39,
However, extrusion ratio also appeared to have an effect on the
development of structure'even though gecmetry and ratio were
taken into account in the definition of strain rate. The lower
extrusion ratio gave a greater tendency to recrystallize during
solution heat treatment at the high 2z (e.g.. compare Figure 28
with Figure 31). However, when extrusion was carried out at low
Z, the combination low 2, ilow R resulted in the lowest degree of
recrystallization. Variation in alloy chemistry alsc seemed to
affect the degree of recrystallization of the W temper products.
Under similar extrusion conditions, alloy 7050 had a greater
tendency to recrystallize than alloy 7475. For example, compare
Figure 28 with Figure 2%. Thus, alloy 7050 extruded using high
Z, low R conditions had the greatest tendency to recrystallize

while 7475 extruded at low Z and low R did not appear to re-

crystallize. Furthermore, the 7475 low R, either as round rod
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or rectangular section was unrecrystallized in the W temper.

As noted earlier, minor differences in the effect of
cooling rate during solidification were observed in the ingot
structure. However, there was no detectable zffect of cooling
rate in the development of structure in the extruded products
of 7475.

The degree of recrystallization estimated from X-ray
pinholes taken near the center agreed qualitatively with optical
results (Table 3).

The grain structure in the extrusions varied from
center to surface. In extrusions with limited recrystallization,
the amount of deformation could be gualitatively assessed by
comparing the aspect ratio (length/width) of the original grains.
Higher aspect ratios (greater deformation) occurred near the
surface of the extrusions (Figure 40). 1In extrusions vhich re-
crystallized, the greatest tendency to recrystallize occurred

t the surface of the extrusions,

As-polished sections of 7050 and 7475 rectangular
cross—-section extrusions showed an effect of extrusion ratio on
the size and distribution of the inscluble phases. The variation
was independent of alloy (7050 versus 7475) and Z. Random
metallurgical sections for the low Z 7050 taken at the surface,
T/4 and T/2 locations are included in Figure 41 to illustrate
the effect of R on the particle distribution. The size and

distribution in the low R extrusion changed from surface to

center. At the surface, the particles were slightly smaller
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and discrete compared to the larger and more clustered particles

at T/2. On the other hand, the high R extrusion did not show

this through thickness variation. A comparison of the high R

with the low R showed that the greater reduction tended to result
in a finer distribution of particles when comparing the T/2 and T/4
locations. However, the surface sections of the low and high R é
extrusions were similar. For comparison, Figure 42 includes a
random metallographic sections comparing high and low R inscluble
particle distribution at the T/2 locations.

High magnification often revealed the presence of sub-
structure in unrecrystallized grains. When recrystallization
occurred, this substructure was absent. Micrographs with three
different orientations of polarization are shown in Figure 43,
Substructure is not present in the recrystallized grain regardless
of orientation, but can be seen in the surrounding unrecrystallized
grains. In certain instances, an alignment of the substructure
was observed. Three orientations, Figure 44, show the distribution
of substructure in a unrecrystaliized section of extrusion, when
in contrast the substructure appears to be aligned at
approximately 45° to the extrusion direction (parallel to the
planes of maximum shear). Higher magnification in another sample,
Figure 45, further illustrates this effect.

There appeared to be an effect of Z on the ability to
show subgrain contrast in the unrecrystallized areas of the
products. Figures 46 and 47 contain polarized light micrographs
of W-temper, longitudinal sections of 7050, the fcur combinations
of high and low Z and R. At both low and high R, high Z tends

to produce a microstructure which has enhanced substructure
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contrast, whereas low Z does not. However, subgrains were present

in the unrecrystallized graine extruded at both low and high Z.

The low Z, low R and high Z, low R microstructures were
examined in the F- and W-tempers at the surface, T/4 and T/2
locations, Foils were prepared from planar sections paraliel
to the surface of the extrusions. The average subgrain sizes are
summarized in Table 4. The subgrain sizes varied slightly from
surface to cent~r, the larger subgrains were generally observed
in the center of the extrusions, and the low Z extrusions usually

had larger subgrain sizes than those extruded at high Z.

In F-temper material, occasionally areas were observed
which contained subgrains adjacent to areas which were fully re-
crystallized, Figure 48.

Pole figures for the W-temper 7050 extruded at low Z,

low R, and low Z, high R; and 7475 extruded axisymmetrically into

a round rod are plotted and discussed in Appendix C.




Mechanical Testing

The average tensile, yield, elongation and reduction in
i area fo. duplicate longitudinal (L) and long-transverse (LT)

tensile tests are summarized in Tables 5 and 6. The averages

AR o IR e

of triplicate tear cests for L-T* and T-L** orientations are

summarized in Tables 7 and 8.

s oseuato g

N Alloy type, 7050 versus 7475, was the only parameter

3 in this program which affected either yield or tensile strength.
However, tensile ductility, Tables 5 and 6, and toughness, as
measured by a tear test, Tables 7 and 8, could be consistantly
correlated to extrusion ratio. The high R extrusions gave the
highest tensile ductility (as measured either by total elongation
or reduction in area). Further, high R gave higher unit propa-
gation energies (UPE's) than did the corresponding low R extrusion
S, regardless of specimen orientation.

Also, another interesting trend in UPE can be taken
from the data in Tables 7 and 8. Within an extrusion condition,
a 7475 solidified at the slower rate (S# 498813, -8il, -821, -825)
had lower UPE's than 7475 solidified more radily (S# 498814, -812,
-822, -826). The casting rate effect was present in both
orientations.

CAFCG
A total of 14 tests (2 single test for each varizble)

were made to evaluate the effects of the different extrusion rara-

b *L-T: OStress in longitudinal direction, crack growing in trans-

1 verse direction.

**T-L: Stress in transverse divection, crack growing in longitudinal
direction.
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meters on the 7050 and 7475. The results are plotted in Figures
49-53. The data are presented according to crack length, a,
versus the number of cycles, N, Figures 49-51, and as the
incremental crack growth per cycle, da/dn, versus the cyclic
stress intensity factor range, AK, Figures 52 and 53. Each
figure contains annotated data points to indicate the alloy and
process variables. Also, the amount, in degrees, the crack
deviated from an ideal crack plane, Figure 54 is given. Cracks
deviating by more than 5° violate the requirements imposed by
ASTM E647-78T. For comparison, results of other investigations
in similar tempers are plotted on Figures 52 and 53.

Examination of Figures 49 and 50 indicates that onl:
one consistent trend emerges from the data. The combination of
high Z, high R results in the shortest life. This observation
was true for 7050 and both 7475 alloys.

Fractography

The tensile, Kahn tear, and FCG fracture surfaces were
examined in the SEM to determine the nature cf the failure process
and the influence of the microstructure on the propagation of a
crack.

Tensile fractures. Regardless of the alloy or

processing variables, the predominant mode of failure was ductile
dimple rupture. Representative SEM's of the tensile failures of
7050 and 7475 are included in Figures 55 and 56.

Tear fractures. Figures 57 and 58 contain SEM's of

TL and LT tear fractures of 7050 extruded at low Z, low R
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(Figure 57), and low Z, high R (Figure 58). These micrographs
were taken beyond the pop-in area where the crack was propagating
stably:- From these micrcgraphs it appears that the erack path
is influenced by the presence of the secondary intermetallics,
The distribution of the dimples on the high R extrusion appears
to be more uniform than the dimple distribution oun the low k
extrusion. Figures 59 and 60 further illustrate the effect of
particles and their distribution on the propagation of the crack.
Again, these micrographs were taken from regions on the fracture
surface where the crack was propagating stably. A low magni-
fication micrograph is included to establish an overall view of
the fracture surface.

FCG fractures. Fracture surfaces at differeut 4AK's

are shown in Figures 61-68 for 7050 extruded under the four test
conditions. Only extrusion ratis appeared to have an effect on
fracture morphology. Tne effects were particularly pronounced
at low AK's, where the fracture path, though propagating trans-
granularly, was strongly influenced by the grain morphology.
Figures 61-64.

Extrusion ratio also appeared to have a minor effect
on the fracture surface in the overload region (high AK).
Figures 65-68 contain SEM's taken near the transition region from
crack growth to overload. The dimples formed in high R extrusions,
Figures 65 and {7, appear to be slightly smaller and more

unifeormly distributed than the dimples which formed in the low

R extrusion shown in Figures 66 and 68.




In summary, only extrusion ratio, R, appeared to have
an effect on the fracture appearance. The origin of this effect
may be in the influence of the extrusion ratio on modifying the
distribution of the insoluble, second phase particles, and
modification of the size and shape of the unrecrystallized
grains,

Specimen lLocation Effects

Triplicate Kahn tear tests were conducted on a 7475
low Z, low R extrusion machined from just below the surface.
These results are presented in Table 9. There was an increase
in UFE going from the center to near surface. (Compare Table 8

with 9).

b ok B e e e e s

Sk S g




29

SUMMARY OF RESULTS

Direct extrusion of aluminum alloy 7050 and 747%
results in a product which has a nonuniform microstructure. The
structure varies from surface to center and from front to rear
of the product. The nonuniform structure develops within the
billet during the extrusion process. Cylinder wall shear produces
a region of intense deformation adjacent to the surface. During
the stroke this layer widens and toward the end of the extrusion
cycle, the heavily sheared layer constitutes a significant
volume of the billet. The material at the surface of the product
comes from the heavily sheared layer and the depth of this well
defined layer increases from front to rear cf the product. During
solution heat treatment, if the structure has a tendency to
recrystallize the greatest probability of recrystallization is
at tite surface. Extruding at high Z (low temperature and high
strain rate) facilitates recrystallization throughout the produc
with complete recrystaliization at the surface. Furthermore,
the results of this investigation indicate that under similar
fabricating conditions 7050 has a greater tendency to recrystal-
lize than 7475.

In addition to the effect ¢of nonuniform flow on the
development of a nonuniform grain structure, the distribution of
insoluble particles are also affected by the metal flow. At
high extrusion ratio, or near the surface where the amount of
deformation is high, the interparticle spacing of the insolubles
appears to be mdﬂified by deformation. Increasing the deformation

increases the interparticle spacing.

- e e
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Yield strength was affected by cross-section geometry
and composition, but was unaffected by changes in Z oxr R. On
the other hand, ductility and toughness could be correlated to
extrusion ratio and location with respect to surface or center of
the extruded product.

Analysis of the fatigue crack growth duta revealed only
ons consistent trend in the data. The combination of high Z and

high R resulted in the shortest lives for both 7050 aud 7475.

DISCUSSION

In this program, composition and shape had an effect
on yield strength; whereas, extrusion ratio, R, and Z did not
have an effect on the yield strength. A comparison of the 7475
tensile data in Table 5 shows the result of changing the shape
from a round cross-section to a rectangular cross-section on the
longitudinal yield strength of 7475 identically aged. The round
rod gives higher strength than the rectangular sections. This
effect has been reported by ochers(13) and is more dramatic in
the T651 temper. The primary difference in the structure of the
round rod and the rectangular section is the crystallographic
texture, Appendix C. The round rod has a duplex fiber texture
with a strong <111> component and a weak <100> component. On the

other hand, the rectangular sections have a rolling texture, (110)

<1i2>.

o
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Since changes in recrystallograrhic texture may affect
strength, a systematic investigation attempting to relate shape
and yield strength to crystallographic texture was conducted(13). ?

The results of this investigation are summarized in Figures 69

and 790. The yield strength showed the usual inverse correlation
with tensile elongation, Figure 70, However, increasing the
aspect ratio decreased the yield strength. These authors
correlated the decrease in the density of <lll> parallel to the
tensile axis. For a (110) <112> texture, the principle crystallo-
graphic axis parallel to the tensile axis is the <112>. With

the high density of <1ll1> parallel to the tensile axis, therefore,

in the round rod there is a high denaity of (1lll) planes nearly
perpendicular to the tensile axis thus unfavorably oriented for
slip. Alternatively, one might relate the density of <l11l1>
parallel to the tensile axis and the corresponding higher Taylor
factor than would occur with a <112> parallel to the temsile

axis.(la)

Regardless of the precise mechanism of strengthening,
it is clear that for the same alloy processed under nearly
ideantical conditions of temperature and strain rate, changes in
die geometry which change texture can have a larger affect on
yield strength in 7XXX alloys than changes in temperature
compensated strain rate, Z.

Figures 9 and 10 compare the F-temper microstructures at
equivalent positions in the interior of two partially extruded
7050 ingots. (Low Z is shown in Figure 9 and high Z is shown in
Figure 10.) In addition to the presence of a deformaticn sub-

structure, soluble phases such as AIZCuMg and Mg (Zn, Cu, Al)2
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are also present. The volume fraction of these phases is dependent
upon the reheat time and temperature prior to hot working.

Figure 71 is a schematic illustrating the effect of compo-
sition on the solvus temperature. TFor a given composition, increas-
ing the hot working temperature decreases the volume fraction of
soluble phase, or at a constant temperature, increasing the solute
content decreases the volume fraction of soluble phases. Over the
hot working range, 290-425°C, the fraction of soluble phase present
varies significantly for 7475 and 7050. Thus the choice of hot
working temperature plays two important roles in heat treatable
aluminum alloys., The hot working temperature affects the dynamic
recovery processes by increasing the number and mobility of the
dislocations. The result is that at low hot working temperatures
a smaller subgrain size is observed compared to the subgrain size
when hot working at a higher temperature. This correlation has
been observed in single phase alloys or alloy systems in which the
fraction of second phase particies is small and temperature
independent. In heat treatable alloys, the soluble elements, Zn,
Mg, and copper, precipitate at the hot working temperature, thus
decreasing the tempeorature or increasing the fraction of second
phase particles,

The second phase particles act as sources and sinks for
dislocations during the deformation process. The interparticle
spacing may have a more important influence on the subgrain size

and distribution than does the state of stress as determined by

temperature. Therefore, when deciding hLow to apply the concepts
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A of hot working, one must know if the structure is temperature
dependent over the range cf hot working conditions. For the two
alloys i{investigated in this program, the effect of temperature on
" structure must be considered.

4 In a detailed investigation on 7050 extrusions, the

'é effects of fabricating variables and section geometry on properties %
g were determined. Since the main thrust of that program was to i
g _ generate data for MIL-HDBK-S,(ls) a detailed microstructural study
.S* was not conducted, however, the mechanical properties reported were

similar to the findings of this investigation, with respect to ratio
effects. For a given aspect ratio the yield strength, increasing
the extrusion ratio increases the NTS/YS ratio, or, for a given
extrusion ratio and yield strength, increasing the aspect ratio
increases the LT-NTS/YS ratio. For an alloy which fails by micro-
vold coalescence, it is the interparticle spacing which controls -«
fracture. Processing which modifies that distribution will alter the ;
toughness, In this investigation and the report in Reference 15, :

increasing the extrusion ratio, proximity to the surface, or aspect

ratio, resulted in an increase in fracture toughness. i
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CONCLUSIONS

For the two alloys investigated a clear, qualitative Jescription

relating the process variables, microstructure, and properties emerged.

However, if we are to consider a different alloy system and a different
method of hot working, the findings of this program would serve as a
guide.

The microstructure of a commercial alloy is a composite of a var-
iety of components, Some of these components such as grain morphology
are affected by the conventional hot working variables T and €. However,
other components such as deformation texture and insoluble particle distri-
bution are affected by die geometry, extrusion ratio, and location. One
needs to know which microstructural feature controls the property of inter-
est and how that microstructural feature is altered by the deformation.
Consequently, a number of investigations of the type reported in this
document will be necessary before a generalized relationship between

process, structure, and properties in aluminum alloys can be presented.

D i
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Figure 1.

Photograph of macroetched F-temper billet extruded at
high Z, low R showing the various regions of interest.
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Figure 2. As-polished sections of 7050 extrusions from alloy cast
at a slow rate of solidification; (a) S-number 498823
at 100X, (b) sane area as (a) at 500X, (c) S-number
498815 at 100X, and (d) same area as (c) at 500X.
Extrusion conditions for 498823 were high 2 and low

- ratio, and for 498815 Ligh Z and high ratio.




Figure 3. Schematic illustrating the surface area covered on the
sphere of reflection.
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Fatigue crack propagation specimen with propagation
gauge,

Figure 4.
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Figure 6.

Photograph of macroetched F-temper billet extruded
high Z, low R.
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Figure 7. X-ray pinhole photographs taken at several locaiions
in the partially extruded, low Z, low R 7050-F bhillet
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Figure 8.

X-ray pinhole photographs taken at several locations
ir partially extruded, high Z, low R 7050-F bille«.
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TEM's taken at several location3s in the partially
extruded low Z, low R 7050-F billet.
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Figure 10. TEM's taken at several locations in the partially
axtruded high Z, low R 7050-F billet. -
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Figure

in

Higher magnification polarized light micrographs of the regions A, B, C, and

D defined

Figure 12.
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Figure 15. Three dimensional grain structure from near the rear
of the partially extruded W-temper 7050.
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Figure i6. Three dimensional grain structure from near the rear
of the partially extruded W-temper 7050.
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Figure 18. Three dimensional grain structure from near the die
exit of the partially extruded W-temper 7050. = -
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the variation of grain structure from surface toward
the center of the product in the partially extruded

Polarized light micrograph of W~temper 7050 showing
high Z, high R extrusion.

Figure 19.
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Figure 21.




Figure 22.

Photograph of macroetched W-temper 7050 extrusion;
(a) low Z and low R, and (b) high Z and low R
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Figure 23.
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Polarized light micrographs of W-tamper 7050 structure
in the heavily sheared layer of tbe butt in the low Z

and low R extrusion.
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Figure 26. Polarized light micrographs of the W-temper 7050 in
the vicinity of the heavily sheared layer in the low
Z low R extrusion, '
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B Figure 40. Longitudinal sections of (a) 7050 and (b) 7475 showing
1 . variation in grain morphology from surface to center
: in the low Z, low R extrusions.
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Figure 41.

LOW R HIGH R

As-polished sections taken at surface, T/4 and T/2
in the low and high R extrusions of 7050.
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Figure 42”
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Figure 48.

RECRYSTALLIZED

RECCVERED

RECOVERED

TTONNAT AT TR

Regions in W temper 7050 which contained recovered
subgrains and recrystallized grains.
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Figure 54. Definition of crack deviation according to ASTM
E647-78T.
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Figure 57.

(a) TL and, (b) LT Kahn tear fractures from 7050
extruded at low Z, low R.




Figure 58. (a) TL and (b) LT Kahn tear fractures of 7050 extruded
at low Z, high R.
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Figure 59. TL Kahn tear fracture of 7050 extruded at high Z,

high R.
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TL Kahn tear fracture of 7050 extruded at h

low R,

.

Figure 60
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Figure 65. TFractographs from the high Z, high R /050 extiusion
in the transition ve;ion from crack growth to over-
load.

The direction of crack growth is given on the
figure.
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Figure 66.

20pm

Fractographs from the high Z, low R 7050 extrusion
in the transition region from crack growth to over-
load. The direction of crack growth is given on the
figure.
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Figure 67.

Fractographs from the low Z, high R 7050 extrusion
in the transition region from crack growth to over-

load. The direction of crack growth is given on the
figure.
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Figure 68. Fractographs from the low Z, low R 7050 extrusion
in the transition region from crack growth to over-

load. The direction of crack growth is given on the
figure.
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APPENDIX A

SELECTION OF EXPERIMENTAL EXTRUSION CONDITIONS

Although the primary aim of the investigation was to
explore the control of mcirostructure through variations in the
temperature compensated strain rate, Z, it seemed advisable to
organize the tests so that the final results could be evaluated
by more traditional means, i.e., in terms of the extrusion and
aspect ratios. Accordingly, an experimental design cof the

following form was chosen:

HIGH Z, HIGH R HIGH 2, LOW R

LOW Z, HIGH R [LOW Z, LOW R

The first step in designing the experiment was to select
extrusion and aspect ratios which would be reasonably representa-
tive of those used for commercial production of 7XXX extrusions

on a 22,5-MN press. The choices were:

Section Size (mm) Extrusion Aspect
Section Width Thickness Diameter Ratio Ratio
TYype (W) (T) (Dg) (R) (w/T)
Rectangular Bar 96.2 8.0 - 26.75 12
Rectangular Bar 102.6 25.6 - 7.82 4
Round Red - ~-- 57.2 8.01 -

The round rod was included because many past investigations of

microstructure development have employed axisymmetric conditions.




|

The next step was to select strain rates and temperatures

to produce as broad a variation as possible in the 2 parameter

and, therefore, in the microstructure. The strain rate (é) and
temperature (1) which determine Z through the relation

Z = ¢ exp(AH/RT)

must, of course, be within the speed and force capabilities of

the extrusion press. Based on prior experience, achievable
extremes of ¢ and T (where T is taken as the initial billet

temperature) are:

€ (1/sec) T (°C) Z (1/sec)
.40 max 288 min 3.4E13 (High 2)
.05 min 427 max 7.4E09 {Low Z)

The Z variation based on the chosen €'s and T's is seen to be
about four orders of magnitude. The literature would suggest
that such variation is ample to effect changes in microstructure.
An activation energy close to that of self diffusion in aluminuu,
150,000 Joules/Gram mole, was used to estimate the Z parameter.
The last step in the design was to determine press ram
velocities consistent with the chosen strain rates. For this,
Feltham's definition of mean strain rate for axisvmmetric

extrusion was used:

. 6D, (1nR)tana
€ =V - !

(D.°-Dg”)
where: € = mean strain rate, l/sec,
V = press ram velocity, mm/sec,
DC = billet container diameter, mm,

DE = extruded rod diameter, mm,

2
i

angle between centerline and dead zone boundary.




For rectangular bars, DE was taken as the equivalent diameter of
the bar cross sectional area, i.e., D, = 2/area/x. This same
value of D, was used to determine the direct extrusion dead
zone angle (a), following the procedure of Avitzur.

The final experimental design, with the appropriate

ram velocities, was:

g HIGH Z, HIGH R{HIGE z, LOW R

: V= 2,2 mm/s V=6.0 mm/s

M e T B Y 2ot

LOW Z, HIGH R [LOW Z, LOW R

V=20.2 mm/s V =0.6 mm/s




APPENDIX B

Specimen Type and Location

The front half of each extrusion was soluticn heat treated*
(SHT), cold water quenched, stretched 1.5%, naturally aged for one
week, and artificially aged for 24 hours at 121°C foilowed by 15
hours at 163°C (T765l-type temper). The various specimens for
mechanical testing were prepared from sections taken at midplane
along the centerline of the rectangular extrusions and along a
diametral plane for the round extrusions. A complete description
showing specimen location and type of specimen is given in
Tables B1-B3. The drawing number and corresponding specinen type

are summarized in Table B4,

SHT: 7050 - I.5 hours at 477°C (890°F)
7475 - 1.5 hours at 516°C (560°F)

- |
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Table B-1.

Table B-2.

Table B-3.

Table B-4.

LIST OF TABLES

Spgcimen Locations from 57.2 mm (2%") Diam. Extruded
Rod.

Specimen Locations from 25.4 mm (1") X 102 mm (4")
Extruded Bar.

Speciwen Locations from 9.5 mm (3/8") X 95 mm (3 3/4™)
Extruded Bar.

Drawing Number and Type of Specimen.
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Table B-4. Drawing Number and Type of Specimen

. Alcoa
B Drawing Number Specimen Description
'ﬁi L~8456-RK .357" Daimeter Tapered
3 Seat Tensile Specimen
%* L-8751-RK 1/8" Diameter Tapered
k- Seat Tensile Specimen
. ; L-7776~-RK 1/4" Diameter Tapered
b Seat Tensile Specimen
1 L-7735-RK 1/2" Diameter Tapered
Seat Tensile Specimen
k- D-01i5365-RK Compact Tension Crack
- Growth Specimen
; L-7201-RK Kahn-Type Tear Test
. Specimen (thickness
E | .100")

l
1
!
-
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APPENDIX C

TEXTURE ANALYSIS
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The results of the texture studies and analyses on the
low Z extrusions are plotted in Figures C-1 - C-3. The textures
could be divided into two types. A duplex <11l> + <100> fiber
texture with a strong <l1ll> component was present in the round
rod. The rectangular sections had a [112] (110) texture. This
texture is the type which develops in rolled plate.

Intuitively we might expect the development of a fiber
texture during the axisymmetric extrusion of a round product from
a round billet. A material is said to have a fiber texture when
it has rotational symmetry about an axis, that is all orientations
about the axis are equally probable. Since the deformation
field is radial, this type of symmetry is reasonable.

Figure C-4 contains the (111) and (00l1) stereographic
projection which can be used in the analysis of the axisymmetric
textures.

For a perfect <1lll> fiber texture, Figure C-5a shows
the radial distribution of (200) poles. 1In this figure, the
axis E, N and R are defined. E is parallel to the extrusion
direction, N is normal to the extrusion direction, and R is
perpendicular to E and N. Since the pole figures were determined
in a plane normal to N, we need to know the distribution of the
(200) poles in that plane. The distribution normal to N can
be determined by rotating the pole figure in Figure C-4b. This
is illustrated by rotation of several points on half of the

(200) circle.*

*The rotation is accomplished by making the axis of rotation R
coincident with the N-S axis cf a Wulff net.




Figure C-6a is the result of having rotated half the circle, and
i Figure C-6b is the complete rotation. The distribution of the
(200) poles for a perfect <1lll> fiber texture normal to and in the
plane of the extrusion direction are plotted in Figure C-7.
Similarly, the distribution of poles for the (220) and (11l) are
given in Figures C-8 and C-9, respectively. The distributions
of the (200), (220) and (lll) for a perfect <100> fiber texture
are plotted in Figures C-10, C-1l, and C-12, respectively.
Comparison of these figures with Figure C-1 facilitates the
identification of texture components in the pole figures from
this research. For'the axisymmetric case a strong <lll> and a
weak <l00> fiber textures were present.

A comparison of Figure C-13 with Figures C-2 and C-3

5% i aid in identifying the texture of the rectangular extrusions,
: the strong (220) intensity in the plane of the extrusion helps

identify the plane, and the strong (220) poled parallel to

strong to the extrusion direction orients the (110) sterographic

-l projection with the pole figure. Thus, (110) (112) describes

the texture for the rectangular sections.




LIST OF FIGURES
Figure C-1. (200) and (220) pole figures of SHT 7475 axisymmet-
rically extruded.

Figure C-2. (200) and (220) pole figures of low Z, low R SHT
7050 extrusion.

Figure C-3. (200) and (220) pole figures of low Z, high R SHT
7050 extrusion.
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Figure C-4. Stereographic projections for a cubic material
(a) (11l1) and (b) (001).

Figure C-5. Rotation of (200) po'es about the R axis.
Figure C-6. Rotation of (200) poles about the R axis.

Figure C-7. Distribution of (200) poles collected from a specimen
(a) perpendicular and (b) parallel to the extrusion
direction for a <11l1> fiber texture.

Figure C-8. Distribution of (220) poles collected from a specimen
(a) perpendicular and (b) parallel to the extrusion
g direction for a <1lll> fiber texture.

Figure C-9. Distribution of {111) poles collected from a specimen
(a) perpendicular and (b) parallel to the extrusion
direction for a <1ll1ll> fiber texture.

Figure C-10. Distribution of (200) poles collected from a specimen
(a) perpendi.cular and (b) parallel to the extrusion
direction for a <100> fiber texture.

Figure C-11. Distribution of the (220) poles collectasd from a
specimen (a) perpendicular (b) parallel to the
extrusion direction for a <100> fiber texture.

Figure C-12. Distribution of the (1l1l) poles collected from a
specimen perpendicular and (b) parallel to the
extrusion direction for a <100> texture.

Figure C-13. (110) stereographic projection oriented with respect
to the extrusion direction.
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